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NUMERICAL SIMULATION OF STABILIZATION OF THE BOUNDARY

LAYER ON A SURFACE WITH A POROUS COATING

IN A SUPERSONIC SEPARATED FLOW

UDC 532.526:533.6.011.5I. V. Egorov,1 A. V. Novikov,2 and A. V. Fedorov2

Stability of a supersonic (M∞ = 5.373) boundary layer with local separation in a compression cor-
ner with a passive porous coating partly absorbing flow perturbations is considered by solving two-
dimensional Navier–Stokes equations numerically. The second mode of disturbances of a supersonic
boundary layer is demonstrated to be the most important one behind the boundary-layer reattachment
point. The possibility of effective stabilization of these disturbances behind the reattachment point
with the use of porous coatings is confirmed.
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Introduction. In a flow with minor perturbations, the laminar–turbulent transition on an aerodynamically
smooth surface occurs because of the growth of various instability modes of the boundary layer. The stability
theory and experiments show that the dominating mode in a high-velocity two-dimensional boundary layer is the
first or the second mode of disturbances. The first mode corresponds to the Tollmien–Schlichting waves and can be
suppressed, for instance, by surface cooling, suction, or favorable pressure gradient [1]. The second mode belongs to
a family of acoustic modes predicted theoretically [2] and registered experimentally [3–5]. If the local Mach number
is sufficiently high (Me > 4 for a gradientless boundary layer on a thermally insulated surface), the second mode
starts dominating, and it is this mode that should be primarily stabilized for flow laminarization. This statement
is valid for a flat plate. On a curved surface, disturbances of other types, e.g., essentially three-dimensional Görtler
vortices, can also play an important role. In the present paper, however, we do not model three-dimensional
disturbances and consider a two-dimensional case.

It was assumed in [6] that the second mode can be stabilized by using a porous coating partly absorbing
acoustic disturbances. This hypothesis was confirmed by computations [7] based on the linear stability theory and
indirectly validated, in turn, by experiments [8] performed on a sharp cone model in a high-enthalpy wind tunnel at
a free-stream Mach number M∞ = 5–6. It was found in these experiments that a coating with uniformly distributed
vertical pores in the form of cylindrical blind holes can substantially delay the laminar–turbulent transition.

The experimental studies [9, 10] of stability of the boundary layer on a sharp cone in a T-326 wind tunnel
of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of Sciences
at M∞ ≈ 6 showed that a porous coating with a random microstructure (metallic felt) suppresses the second mode
and exerts an insignificant effect on the first mode. The model in experiments [11] was a cone with a coating having
a regular microstructure (perforated thin sheet similar to that used in [8]). This coating was also found to stabilize
the second mode and to weakly affect the first mode. The measured phase velocities and amplitudes of disturbances
are in reasonable agreement with the linear stability theory.
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Fig. 1. Computational domain and grid used in the problem (compression angle α = 5.5◦).

In the above-cited papers, the stability was computed either in the locally parallel approximation or with
partial allowance for nonparallelism effects; viscous-inviscid interaction and nonlinear effects were ignored. Inter-
action of external disturbances (acoustic, vortex, and entropy disturbances) of the incoming flow with the porous
coating was not simulated either. To take these factors into account, one has to perform direct numerical simulations
by methods developed in [12–14] for problems of stability of high-velocity near-wall flows. Note that the method of
direct numerical simulation enables one to estimate the efficiency of the porous coating in strongly nonuniform flows,
such as the flows in regions of boundary-layer separation and reattachment, where the classical stability theory is
inapplicable.

In the present work, we used a total variation diminishing (TVD) scheme of the second order of approximation
in space and time to numerically solve the Navier–Stokes equations for unsteady two-dimensional compressible flows.
Stability of a supersonic boundary layer with local separation in a compression corner at a free-stream Mach number
M∞ = 5.373 was considered. The computations were performed for two-dimensional disturbances developed on a
solid surface and on a porous coating with a regular microstructure and different pore sizes.

Formulation of the Problem and Numerical Method. The Navier–Stokes equations for two-
dimensional viscous compressible unsteady flows are solved. In dimensionless form, the system of equations is
given, for instance, in [13]. The dependent variables are normalized to the corresponding free-stream parameters:
the pressure is normalized to the doubled dynamic pressure ρ∗∞(U∗

∞)2 (ρ∗∞ and U∗
∞ are the free-stream density

and velocity, respectively); the coordinates are normalized to the reference length L∗, which is the distance from
the leading edge of the plate to the inflection point (Fig. 1); the time is normalized to L∗/U∗

∞. The following
similarity parameters are used: the Reynolds number Re∞ = L∗U∗

∞ρ∗∞/μ∗
∞, the free-stream Mach number M∞, the

ratio of specific heats of a perfect gas γ, and the Prandtl number Pr; the asterisk indicates dimensional quantities,
and the subscript ∞ refers to free-stream parameters. The results discussed below were obtained at M∞ = 5.373,
Re∞ = 5.667 ·106, γ = 1.4, Pr = 0.72, and T ∗∞ = 74.194 K. The dynamic viscosity μ was calculated by Sutherland’s
formula μ = T 3/2(Tμ + 1)/(Tμ + T ), where T ∗

μ = 110 K.
To solve the problem numerically, we used an implicit finite-volume method with the second order of ap-

proximation in space and time. We used a quasi-monotonic Godunov-type scheme (TVD scheme), which is most
efficient if the computational domain contains shock waves and other strong spatial inhomogeneities of the flow, such
as boundary-layer separation. The previous computations of an unsteady field of disturbances on a flat plate with
a sharp leading edge [13] showed that this scheme may be used for problems of stability of a supersonic boundary
layer.

Figure 1 shows the computational domain of the problem. The boundary conditions were the no-slip condi-
tions on the lower boundary of the domain (zero vertical and horizontal components of velocity: u = v = 0), the
free-stream conditions on the left and upper boundaries, and linear extrapolation of the dependent variables u, v,
p, and T on the right boundary (“soft” boundary conditions). The plate surface was assumed to be isothermal and
to have a temperature T ∗

w = 300 K (Tw = 4.043). The computations were performed on a curved orthogonal grid
with 2801 × 221 nodes (Fig. 1 shows each 20th line) obtained by conformal mapping of the upper half-plane onto
the computational domain:
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Fig. 2. Porous layer: top view (a) and side view (b); 1) perforated
sheet; 2) pores; 3) solid substrate.

x = −(ξ2 + η2)(1−ϕ)/2 cos ((1 − ϕ) arctan (ξ, η)) + 1,

y = (ξ2 + η2)(1−ϕ)/2 sin ((1 − ϕ) arctan (ξ, η)),

ϕ = α/π.

The grid was refined near the surface, so that 55% of the nodes were within the boundary layer and the separation
region with the mixing layer.

The problem was solved in three stages. A steady flow field was first computed by a time-dependent
method. Then unsteady disturbances were imposed onto the steady solution to study boundary-layer stability:
local periodic injection-suction was introduced on the wall. This factor was simulated by a nonuniform boundary
condition imposed onto the mass-flow perturbation:

qw(x, t) =
ρ∗wv∗w
ρ∗∞U∗∞

= ε sin
(
2π

x − x1

x2 − x1

)
sin (ωt), x1 � x � x2.

Here x = x∗/L∗ is the dimensionless longitudinal coordinate, x1 = 0.0358 and x2 = 0.0521 are the boundaries of the
injection-suction region, and ω = ω∗L∗/U∗

∞ = 450 is the dimensionless frequency corresponding to the frequency
parameter F = ω/Re∞ = 7.94 · 10−5; the subscript w refers to conditions on the wall (surface). To provide a
linear regime of evolution of disturbances before separation and, hence, to make comparisons with the linear theory
possible, we chose a rather low forcing amplitude ε = 10−3. The unsteady problem was computed until a periodic
field of disturbances was established (t ≈ 1.75).

At the third stage of computations, boundary conditions simulating interaction of disturbances with a porous
layer on an inclined surface (downstream from the inflection point) were introduced into the procedure of solving the
unsteady problem to study the effect of the porous coating. The computation was continued from the time t ≈ 1.75
until a periodic field of disturbances was established again (t ≈ 2.25). The porous wall (x > 1.0) was subjected to
an unsteady boundary condition in accordance with the theoretical model developed in [15] and extended in [7] to
the second-mode disturbances. After the transition from the complex quantities used in [7] to real quantities, the
boundary condition acquires the form

uw(x, t) = −V n
w (x, t) sin α, vw(x, t) = V n

w (x, t) cos α,

V n
w (x, t) = p′w(x, t) Real (A) − 1

ω

∂p′w(x, t)
∂t

Imag (A),

where V n
w (x, t) is the velocity component normal to the wall, p′w(x, t) = pw(x, t) − pw(x, 0) is the pressure pertur-

bation on the wall (difference between the instantaneous value of pressure and the pressure corresponding to the
solution of the steady problem prior to introduction of disturbances), A = φ tanh (Λh)/Z0 is the permeability of
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Fig. 3. Density contours of a steady flow field.
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Fig. 4. Contours of pressure perturbations in the separation region for problems with a solid wall
and a porous wall: the dashed curve shows the boundary of the mixing layer; the solid curve is the
zero streamline.

the porous layer [15], φ is the porosity (ratio of the volume of pores to the total volume of the porous layer), and
Z0 and Λ are the characteristic impedance and the propagation constant for an individual pore.

In the computations, we used a coating model with uniformly distributed vertical cylindrical blind holes
(pores). The porous layer is schematically shown in Fig. 2 (the dimensionless radius of the pore is r0 = 1.5 · 10−4

and the layer thickness is h = 10r0 = 1.5 · 10−3). For such a coating, the values of Z0 and Λ are calculated by the
algorithm described in [7].

Computation Results. Figure 3 shows the computed steady density field. Viscous-inviscid interaction is
responsible for formation of a shock wave in the vicinity of the leading edge. Further downstream, the compression
corner induces an oblique shock whose interaction with the boundary layer in the vicinity of the corner point leads
to formation of a recirculation zone. The upper boundary of the separation region is an almost straight line, which
is typical of supersonic flows. Two compression waves are formed in the vicinity of the separation and reattachment
points. The resultant steady field is in good agreement with the results of [14], where the same flow regime was
computed by a WENO scheme of the fifth-order accuracy of space discretization.

Figure 4 shows the field of pressure perturbations in the separation region. In these computations and in
what follows, this field is obtained by subtracting the initial steady field from the instantaneous unsteady field.
Forced oscillations induced by the vibrator are seen on the surface upstream of the separation point. Fast acoustic
waves emitted by the injection-suction source are visible above the boundary layer and the mixing layer. Acoustic
disturbances generated in the vicinity of the inflection point are manifested in the separation region in the form of
vertically aligned cellular structures.
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Fig. 5. Pressure fluctuations on the surface: (a) solid wall; (b) porous
wall with x > 1 and φ = π/16.

The computations for a porous surface were performed for φ = π/9 and π/16 corresponding to the distances
between the centers of the neighboring pores s = 3r0 and 4r0. The parameters were chosen to have approximately
20 pores in the streamwise direction in a segment equal to the length of the second-mode wave (λ ≈ 0.012 for
a disturbance frequency ω = 450). For such a high concentration of pores and their small radius, the coating
roughness seems to be negligibly small, but the porous layer can efficiently absorb perturbations penetrating into
the layer [6, 7, 11].

The simulated structure of the field of disturbances in the problem with a porous surface is similar to
the structure of disturbances in the problem with a solid surface (only the disturbance amplitudes are different);
therefore, in particular, Fig. 4 is valid for both problems. For interpreting the effect of the porous coating, this
property allows one to consider fluctuations on the surface only. Figure 5 shows the distributions of pressure
perturbations on a solid wall and on a porous surface. At the exit from the computational domain, the porous
coating leads to an approximately ninefold decrease in the disturbance amplitude (φ = π/16). This effect is even
more pronounced for porosity φ = π/9: the amplitude decreases by a factor of 12. In the region 1.0 < x < 1.2 (up
to the point of reattachment x ≈ 1.136), the amplitudes on the porous and solid surfaces are almost identical.

It seems of interest to consider which type of disturbances is most strongly affected by the porous coating.
Based on the distribution of fluctuations on the surface (see Fig. 5), we found a discrete set of local wavelengths
of disturbances λ(xc) = xmax 2 − xmax 1, where xmax 1 and xmax 2 are the coordinates of the neighboring maximums
on the plot; xc = (xmax 1 + xmax 2)/2. After that, continuous dependences of the wavenumber and phase velocity
on the x coordinate were obtained with the use of a five-point smoothing filter on the basis of the fast Fourier
transform: k(x) = 2π/λ(x) and c(x) = ω/k(x) (Fig. 6). (The vertical lines in Fig. 6 are drawn through the points
of separation, inflection, and reattachment.) The disturbances approach the separation point with a phase velocity
c = 0.9, and exponential growth of the amplitude is observed at this point (see Fig. 5). A comparison with the
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Fig. 6. Phase velocity of the wave of disturbances: the solid and dashed curves refer to the solid
and porous walls, respectively.
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Fig. 7. Contours of temperature disturbances near the reattachment point.

linear theory applicable upstream of the separation, as in the case of a flat plate, which was performed in [13],
showed that this growth corresponds to the second mode with a characteristic phase velocity c = 0.9. Behind the
reattachment point, the phase velocity of disturbances again approaches a value of 0.9, and exponential growth
of the amplitude is observed, which may be caused by second-mode instability, as in the flat-plate case. This is
confirmed by topology of the field of temperature fluctuations in the boundary layer, which is shown in Fig. 7 (such
a pattern is observed on both the porous and the solid wall). The spindle structure typical of the second model of
disturbances is clearly seen. Thus, in the problem considered, the second-mode disturbances dominate, which are
efficiently stabilized by a porous coating.

It should be noted that the phase velocity of the wave in the separation region (see Fig. 6) is far from the
value c = 0.9. There is also a difference in phase velocities for the porous and solid walls, because the curves in Fig. 6
were computed for different times. This behavior of the phase velocity, which is caused apparently by the presence
of the traveling wave, and the results of an analysis of disturbances in Fig. 4 allow us to argue that long-wave
(propagating in the transverse direction) acoustic disturbances prevail in the separation region; the reason for these
disturbances seems to be secondary reflections of forced perturbations from the inflection. Note that these acoustic
disturbances remain almost unaffected by the porous coating (see Fig. 5), i.e., there are no side effects, which could,
for instance, amplify acoustic disturbances in the separation region.
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Fig. 8. Growth rate of the amplitude of fluctuations on the solid surface (solid curves) and on a
porous surface with φ = π/16 (dashed curves): (a) full scale in the x direction; (b) region behind
the reattachment point in the zone of growth of the second mode of disturbances.

The effect of the porous coating on the growth rate of disturbances σ = d[ln p′w(x)]/dx is plotted in Fig. 8
(the vertical lines are drawn through the points of separation and reattachment). The effect of stabilization is not
well seen in the full-scale figure (Fig. 8a) because of the large fluctuations of the growth rate in the separation
region, but the magnified picture of the region of interest behind the reattachment point (Fig. 8b) clearly shows
that the porous coating reduces the growth rate of disturbances more than twofold. As it could be expected, the
growth rates upstream of the reattachment point are identical for the solid and porous walls (Fig. 8a).

Conclusions. Stability of a supersonic boundary layer in a compression corner with a solid surface and with
a surface covered by a porous layer is simulated by means of numerical integration of two-dimensional Navier–Stokes
equations. For this purpose, perturbations of the injection-suction type, local in space and harmonic in time, are
introduced into the boundary layer. The model of a coating with equidistant cylindrical blind pores is demonstrated
to substantially reduce the growth rate of the second mode. In particular, for a porosity approximately equal to
20%, the amplitude of the second mode at the output boundary of the computational domain decreases by a factor
of 9.

It should be noted that the porous layer weakly affects the acoustic component of disturbances in the
boundary layer, i.e., the porous coating does not produce adverse effects of secondary reflections of acoustic waves
in the separation region. Such effects could lead to resonant amplification of disturbances and, as a consequence,
to an early transition in the boundary layer. Yet, the question of the roughness of the porous surface, which exists
in reality and is not simulated in this work, remains open. In addition, edge effects on the pore are ignored in [7] in
deriving the boundary conditions for a porous coating. Finally, the present computations ignore three-dimensional
disturbances, such as the Görtler vortices, which may exert a significant effect on the examined phenomenon. All
these phenomena require further investigations.

The numerical simulations performed support the concept of stabilization of boundary-layer perturbations
with the use of a passive porous coating at sufficiently high free-stream Mach numbers.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-08-01214).
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